295 research outputs found

    Gaze Tracking in Semi-Autonomous Grasping

    Get PDF
    In critical human/robotic interactions such as, e.g., teleoperation by a disabled master or with insufficient bandwidth, it is highly desirable to have semi-autonomous robotic artifacts interact with a human being. Semi-autonomous grasping, for instance, consists of having a smart slave able to guess the master’s intentions and initiating a grasping sequence whenever the master wants to grasp an object in the slave’s workspace. In this paper we investigate the possibility of building such an intelligent robotic artifact by training a machine learning system on data gathered from several human subjects while trying to grasp objects in a teleoperation setup. In particular, we investigate the usefulness of gaze tracking in such a scenario. The resulting system must be light enough to be usable on-line and flexible enough to adapt to different masters, e.g., elderly and/or slow. The outcome of the experiment is that such a system, based upon Support Vector Machines, meets all the requirements, being (a) highly accurate, (b) compact and fast, and (c) largely unaffected by the subjects’ diversity. It is also clearly shown that gaze tracking significantly improves both the accuracy and compactness of the obtained models, if compared with the use of the hand position alone. The system can be trained with something like 3.5 minutes of human data in the worst case.task is neutral

    Using ultrasound images of the forearm to predict finger positions

    Get PDF

    SAT-Based Decision Procedures for Automated Reasoning: a Unifying Perspective

    Get PDF
    Propositional reasoning (SAT) is an essential part of many reasoning tasks. Many problems in computer science can be compiled to SAT and then effectively decided using state-of-the-art solvers. Alternatively, if reduction to SAT is not feasible, the ideas and technology of state-of-the-art SAT solvers can be useful in deciding the propositional component of the reasoning task being considered. This last approach has been used in different contexts by different authors, many times by authors of this paper. Because of the essential role played by the SAT solver, these decision procedures have been called "SAT-based". SAT-based decision procedures have been proposed for various logics, but also in other areas such as planning. In this paper we present a unifying perspective on the various SAT-based approaches to these different reasoning tasks

    Online natural myocontrol of combined hand and wrist actions using tactile myography and the biomechanics of grasping

    Get PDF
    Connan M, Kõiva R, Castellini C. Online natural myocontrol of combined hand and wrist actions using tactile myography and the biomechanics of grasping. Frontiers in Neurorobotics. 2020;14: 11.Objective: Despite numerous recent advances in the field of rehabilitation robotics, simultaneous and proportional control of hand and/or wrist prostheses is still unsolved. In this work we concentrate on myocontrol of combined actions, for instance power grasping while rotating the wrist, by only using training data gathered from single actions. This is highly desirable since gathering data for all possible combined actions would be unfeasibly long and demanding for the amputee. Approach: We first investigated physiologically feasible limits for muscle activation during combined actions. Using these limits we involved 12 intact participants and one amputee in a Target Achievement Control test, showing that tactile myography, i.e. high-density force myography, solves the problem of combined actions to a remarkable extent using simple linear regression. Since real-time usage of many sensors can be computationally demanding, we compare this approach with another one using a reduced feature set. These reduced features are obtained using a fast, spatial first-order approximation of the sensor values. Main results: By using the training data of single actions only, i.e. power grasp or wrist movements, subjects achieved an average success rate of 70.0% in the target achievement test using ridge regression. When combining wrist actions, e.g. pronating and flexing the wrist simultaneously, similar results were obtained with an average of 68.1%. If a power grasp is added to the pool of actions, combined actions are much more difficult to achieve (36.1%). Significance: To the best of our knowledge, for the first time, the effectiveness of tactile myography on single and combined actions is evaluated in a target achievement test. The present study includes 3 DoFs control instead of the two generally used in the literature. Additionally, we define a set of physiologically plausible muscle activation limits valid for most experiments of this kind

    Automated Reasoning in Quantified Modal and Temporal Logics

    Get PDF
    Centre for Intelligent Systems and their ApplicationsThis thesis is about automated reasoning in quantified modal and temporal logics, with an application to formal methods. Quantified modal and temporal logics are extensions of classical first-order logic in which the notion of truth is extended to take into account its necessity or equivalently, in the temporal setting, its persistence through time. Due to their high complexity, these logics are less widely known and studied than their propositional counterparts. Moreover, little so far is known about their mechanisability and usefulness for formal methods. The relevant contributions of this thesis are threefold: firstly, we devise a sound and complete set of sequent calculi for quantified modal logics; secondly, we extend the approach to the quantified temporal logic of linear, discrete time and develop a framework for doing automated reasoning via Proof Planning in it; thirdly, we show a set of experimental results obtained by applying the framework to the problem of Feature Interactions in telecommunication systems. These results indicate that (a) the problem can be concisely and effectively modeled in the aforementioned logic, (b) proof planning actually captures common structures in the related proofs, and (c) the approach is viable also from the point of view of efficiency

    A dataset of continuous affect annotations and physiological signals for emotion analysis

    Get PDF
    From a computational viewpoint, emotions continue to be intriguingly hard to understand. In research, direct, real-time inspection in realistic settings is not possible. Discrete, indirect, post-hoc recordings are therefore the norm. As a result, proper emotion assessment remains a problematic issue. The Continuously Annotated Signals of Emotion (CASE) dataset provides a solution as it focusses on real-time continuous annotation of emotions, as experienced by the participants, while watching various videos. For this purpose, a novel, intuitive joystick-based annotation interface was developed, that allowed for simultaneous reporting of valence and arousal, that are instead often annotated independently. In parallel, eight high quality, synchronized physiological recordings (1000 Hz, 16-bit ADC) were made of ECG, BVP, EMG (3x), GSR (or EDA), respiration and skin temperature. The dataset consists of the physiological and annotation data from 30 participants, 15 male and 15 female, who watched several validated video-stimuli. The validity of the emotion induction, as exemplified by the annotation and physiological data, is also presented.Comment: Dataset available at: https://rmc.dlr.de/download/CASE_dataset/CASE_dataset.zi

    Multi-subject/daily-life activity EMG-based control of mechanical hands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand.</p> <p>Results</p> <p>A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state.</p> <p>Conclusion</p> <p>Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.</p

    The SAT-based Approach to Separation Logic

    Get PDF
    The SAT-based approach to the decision problem for expressive, decidable, quantifier-free first-order theories has been investigated with remarkable results at least since 1993. One such theory, successfully employed in the formal verification of complex, infinite state systems, is Separation Logic (SL), which combines Boolean logic with arithmetic constraints of the form x − y ⋈ c, where ⋈ is ≤, , ≥, =, or ≠. The SAT-based approach to SL was first proposed and implemented in 1999: the results in terms of performance were good, and since then a number of other systems for SL have appeared. In this paper we focus on the problem of building efficient SAT-based decision procedures for SL. We present the basic procedure and four optimizations that improve dramatically its effectiveness in most cases: (a) IS 2 preprocessing, (b) early pruning, (c) model reduction, and (d) best reason detection. For each technique we give an example of how it might improve the performance. Furthermore, for the first three techniques, we give a pseudo-code representation and formally state the soundness and completeness of the resulting optimized procedure. We also show how it is possible to check the satisfiability of valuations involving constraints of the form x − y < c using the Bellman-Ford algorithm. Lastly, we present an extensive comparative experimental analysis, showing that our solver TSAT++, built along the lines described in this paper, is currently the state of the art on various classes of problems, including randomly generated, hand-made, and real-world instance
    corecore